Solvent-Induced Proton Hopping at a Water–Oxide Interface

نویسندگان

  • Gabriele Tocci
  • Angelos Michaelides
چکیده

Despite widespread interest, a detailed understanding of the dynamics of proton transfer at interfaces is lacking. Here, we use ab initio molecular dynamics to unravel the connection between interfacial water structure and proton transfer for the widely studied and experimentally well-characterized water-ZnO(101̅0) interface. We find that upon going from a single layer of adsorbed water to a liquid multilayer, changes in the structure are accompanied by a dramatic increase in the proton-transfer rate at the surface. We show how hydrogen bonding and rather specific hydrogen-bond fluctuations at the interface are responsible for the change in the structure and proton-transfer dynamics. The implications of this for the chemical reactivity and for the modeling of complex wet oxide interfaces in general are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydroxylation Structure and Proton Transfer Reactivity at the Zinc Oxide Water Interface

Hydroxylation Structure and Proton Transfer Reactivity at the Zinc Oxide Water Interface David Raymand, Adri C.T. van Duin, William A. Goddard, III, Kersti Hermansson, and Daniel Spångberg* Materials Chemistry, The Ångstr€om Laboratory, Uppsala University, Box 538, S-751 21 Uppsala, Sweden Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Penn...

متن کامل

Comparison between direct current and sinusoidal current stressing of gate oxides and oxide/silicon interfaces in metal–oxide–silicon field-effect transistors

Articles you may be interested in Observation of gate bias dependent interface coupling in thin silicon-on-insulator metal-oxide-semiconductor field-effect transistors Mobility comparison between front and back channels in ultrathin silicon-on-insulator metal-oxide-semiconductor field-effect transistors by the front-gate split capacitance-voltage method Appl. Trap evaluations of metal/oxide/sil...

متن کامل

Studies on the SPEEK membrane with low degree of sulfonation as a stable proton exchange membrane for fuel cell applications

Sulfonated poly (ether ether ketone) (SPEEK) with a low degree of sulfonation (DS = 40%) was prepared for proton exchange membrane fuel cells (PEMFC). Poly (ether ether ketone) (PEEK) was sulfonated in concentrated H2SO4 under N2 atmosphere and characterized by the hydrogen nuclear magnetic resonance (H-NMR) technique. After preparation of the SPEEK polymer, the obtained polymer was dissolved i...

متن کامل

Atomistic simulation of water percolation and proton hopping in Nafion fuel cell membrane.

We have performed a detailed analysis of water clustering and percolation in hydrated Nafion configurations generated by classical molecular dynamics simulations. Our results show that at low hydration levels H(2)O molecules are isolated and a continuous hydrogen-bonded network forms as the hydration level is increased. Our quantitative analysis has established a hydration level (λ) between 5 a...

متن کامل

Molecular Dynamics Simulations Reveal Proton Transfer Pathways in Cytochrome C-Dependent Nitric Oxide Reductase

Nitric oxide reductases (NORs) are membrane proteins that catalyze the reduction of nitric oxide (NO) to nitrous oxide (N(2)O), which is a critical step of the nitrate respiration process in denitrifying bacteria. Using the recently determined first crystal structure of the cytochrome c-dependent NOR (cNOR) [Hino T, Matsumoto Y, Nagano S, Sugimoto H, Fukumori Y, et al. (2010) Structural basis o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014